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Instabilities in the two-dimensional cubic nonlinear Schrödinger equation
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The two-dimensional cubic nonlinear Schro¨dinger equation~NLS! can be used as a model of phenomena in
physical systems ranging from waves on deep water to pulses in optical fibers. In this paper, we establish that
every one-dimensional traveling wave solution of NLS with linear phase is unstable with respect to some
infinitesimal perturbation with two-dimensional structure. If the coefficients of the linear dispersion terms have
the same sign~elliptic case!, then the only unstable perturbations have transverse wavelength longer than a
well-defined cutoff. If the coefficients of the linear dispersion terms have opposite signs~hyperbolic case!, then
there is no such cutoff and as the wavelength decreases, the maximum growth rate approaches a well-defined
limit.
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I. INTRODUCTION

The two-dimensional cubic nonlinear Schro¨dinger equa-
tion ~NLS! is given by

ic t1acxx1bcyy1gucu2c50, ~1!

wherec5c(x,y,t) is a complex-valued function, anda, b,
andg are real constants. All quantities are presented in u
less form. Among many other situations, NLS arises as
approximate model for the evolution of a nearly monoch
matic wave of small amplitude in pulse propagation alo
optical fibers@1# where ab.0, in gravity waves on deep
water @2,3# where ab,0 and in Langmuir waves in a
plasma@4# where ab.0. As a description of a superflui
@5#, NLS is known as the Gross-Pitaevskii equation@6,7#
with ab.0. Sulem and Sulem@8# examine NLS in detail.

NLS admits a large class of one-dimensional travel
wave solutions of the form

c~x,y,t !5f~ax1by2st!eilt1 ias̄x1 ibs̄y1 ih, ~2!

wheref is a real-valued function,s̄5s/(2aa212bb2), and
a, b, s, l, andh are real parameters. By making use of t
symmetries of NLS@8#, all solutions of this form can be
considered by studying the simplified form

c~x,y,t !5f~z!eikx1 ilt, ~3!

wheref is a real-valued function,z5x22akt, andk andl
are real parameters.

If ag.0, then NLS admits the following two solutions o
form ~3!:

f~z!5A2
a

g
k cn~z,k! with l5a~2k2212k2!, ~4!

f~z!5A2
a

g
dn~z,k! with l5a~22k22k2!. ~5!
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If ag,0, then NLS admits the following solution:

f~z!5A22
a

g
k sn~z,k! with l52a~11k21k2!.

~6!

Here kP@0,1# is a free parameter known as the ellipt
modulus and cn(•,k), dn(•,k), and sn(•,k) are Jacobi ellip-
tic functions. Byrd and Friedman@9# provide a complete re-
view of elliptic functions. Ifk,1, then each functionf(z) is
periodic. As k→1, the period of each increases witho
bound, andf(z) limits to an appropriate hyperbolic func
tion, which we call a ‘‘solitary wave.’’

These solutions, plus the ‘‘Stokes’ wave’’~plane wave!

c~x,t !5Aeikx2 i (ak22guAu2)t, ~7!

contain the entire class of bounded traveling wave soluti
of NLS with linear phase@10#. Davey and Stewartson@3#
establish that a Stokes’ wave is unstable unless ei
abg50 or ab.0 andag,0. In the remainder of this pa
per, we concentrate on Eqs.~4!–~6!, and on their instabili-
ties.

Zakharov and Rubenchik@11# establish that Eqs.~4! and
~5! with k51 are unstable with respect to long-wave tran
verse perturbations. Pelinovsky@12# reviews the stability of
solitary wave solutions of NLS withab,0 andag.0, and
presents an analytical expression for the growth rate of
instability near a cutoff. Extensive reviews of the stability
solitary wave solutions are given in Refs.@13–15#. Martin,
Yuen and Saffman@16# examine numerically the stability o
the spatially periodic solution given in Eq.~5! for a range of
parameters. Infeld and Ziemkiewicz@17# establish that all
nonlinear~or ‘‘nontrivial’’ ! phase solutions are unstable wi
respect to long-wavelength perturbations. Aleshkevichet al.
@18# and Kartashovet al. @19# numerically examine the sta
bility of Eqs. ~4!–~6! in NLS and establish some of the re
sults obtained here.

We present four main results in this paper. First, ev
one-dimensional traveling wave with linear phase is unsta
with respect to some infinitesimal perturbation with tw
dimensional structure. Forall choices of the parameters
there are unstable perturbations with long transverse wa
©2003 The American Physical Society01-1
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length. This result was originally presented in Ref.@17#. Our
work generalizes the method and results of Ref.@11#.

Second, ifab.0, then the only unstable perturbation
have transverse wavelength longer than a well-defined
off.

Third, if ab,0, then there is no such cutoff. There a
unstable perturbations with arbitrarily short wavelengths
both the transverse and longitudinal directions.

Fourth, forab,0, the unstable perturbations with sho
wavelength have transverse wave numbers that are con
to narrower and narrower intervals as the transverse w
number grows without bound. In these unstable intervals
the transverse wave number grows without bound, the m
mum growth rate approaches a well-defined limit. Ask→1,
this limiting growth rate tends to zero ifag.0, and to a
finite nonzero limit ifag,0.

II. STABILITY ANALYSIS

We consider perturbed solutions,cp5cp(x,y,t), with the
following structure:

cp5@f~z!1eu~x,y,t !1 i ev~x,y,t !1O~e2!#eikx1 ilt,
~8!

whereu(x,y,t) andv(x,y,t) are real-valued functions,e is a
small real parameter,z5x22akt, andf(z)eikx1 ilt is one
of the solutions presented in the preceding section. Subst
ing Eq. ~8! into Eq. ~1!, linearizing and separating into rea
and imaginary parts gives

2~ak21l!u13gf2u1buyy1auxx5v t , ~9a!

2~ak21l!v1gf2v1bvyy1avxx52ut . ~9b!

Without loss of generality, assume thatu(x,y,t) and
v(x,y,t) have the forms

u~x,y,t !5U~z,r!eiry2Vt1c.c., ~10a!

v~x,y,t !5V~z,r!eiry2Vt1c.c., ~10b!

wherer is a real constant,V is a complex constant,U andV
are complex-valued functions, and c.c. denotes complex c
jugate. This leads to

~ak21l!U23gf2U1br2U2a]z
2U5VV, ~11a!

~ak21l!V2gf2V1br2V2a]z
2V52VU. ~11b!

These are the central equations in this paper. We assume
U andV are periodic with the same period asf. More gen-
eral boundary conditions are discussed in Ref.@20#. Instabil-
ity occurs if Eq. ~11! admits a periodic solution with
Re(V),0. Without loss of generality, for the remainder
this paper we assumek50 by redefiningl.

In Secs. III and IV, we examine Eq.~11! using small-r
and large-r asymptotic analyses, respectively. In Sec. V,
present results from a numerical study in which Eq.~11! was
solved for a wide range ofr values.
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III. SMALL- r LIMIT

Generalizing the work in Ref.@11#, we assume that for
fixed k and for fixed smallr, Eq.~11! admits solutions of the
form

U;u0~z!1ru1~z!1r2u2~z!1•••, ~12a!

V;v0~z!1rv1~z!1r2v2~z!1•••, ~12b!

V2;r2v11r3v21•••, ~12c!

wherev j are complex constants anduj andv j are complex-
valued periodic functions with the same period asf.

This assumption leads to the ‘‘neck’’ mode

Un~z,r!5O~r!, ~13a!

Vn~z,r!5f1O~r!, ~13b!

Vn
252abr2v1n1O~r3! ~13c!

and the ‘‘snake’’ mode

Us~z,r!5
df

dz
1O~r!, ~14a!

Vs~z,r!5O~r!, ~14b!

Vs
252abr2v1s1O~r3!, ~14c!

wherev1n andv1s are functions of the elliptic modulus o
the unperturbed solution. Complicated but exact express
for v1n andv1s are derived in Ref.@20#. The final results are
presented in Fig. 1, where we plotv1n andv1s ~which de-
termine the growth rates! versusk for Eqs.~4!–~6!.

These plots establish thatv1n,0 for Eqs.~4! and~5! and
v1s,0 for Eq.~6!. Therefore, ifab.0, Eqs.~4! and~5! are
unstable with respect to long-wave transverse perturbat

FIG. 1. Plots ofv1n and v1s vs k in ~a! and ~b!, respectively.
The solid line corresponds to Eq.~4!, the dotted line corresponds t
Eq. ~5!, and the dashed line corresponds to Eq.~6!.
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corresponding to the neck mode and Eq.~6! is unstable with
respect to long-wave transverse perturbations correspon
to the snake mode.

These plots also establish thatv1s.0 for Eqs.~4! and~5!
andv1n.0 for Eq.~6!. Therefore, ifab,0, Eqs.~4! and~5!
are unstable with respect to the snake mode and Eqs.~6! is
unstable with respect to the neck mode.

It follows from these results that a linear phase solution
NLS is unstable to a growing neck mode ifbg.0, and to a
growing snake mode ifbg,0.

IV. LARGE- r LIMIT

If ab.0 andr is chosen to be large enough to satisfy

r2.5UabU, ~15!

then the two operators on the left hand side of Eq.~11! have
the same sign, soV2,0. Therefore, there is no large-r in-
stability if ab.0.

If ab,0 andr is large, then one can show that there
no instability unlessV5O(1). Therefore, we assume

U;z1~mz!1r22z2~mz!1•••, ~16a!

V;j1~mz!1r22j2~mz!1•••, ~16b!

V;w11r22w21•••, ~16c!

am252br21n1O~r22!, ~16d!

wheren is a real constant,wj are complex constants, andz j
andj j are complex-valued periodic functions with the sam
period asf.

Substituting Eq.~16! into Eq. ~11!, one finds at leading
order

U;z11sin~mz1z0!1O~r22!, ~17a!

V;j11sin~mz1z0!1O~r22!, ~17b!

wherez11, j11, andz0 are constants. RequiringU andV to
have the same period asf(z) forcesm to take on discrete
values:m52pN/L, whereL is the period off(z), andN is
an integer. To satisfy Eq.~16d!, N@1. At the next order inr,
solutions are periodic only if

w156Ag f 2l1nAl23g f 2n, ~18!

where f is the Fourier coefficient@in sin(mz1z0)] of
f2(z)sin(mz1z0) and n is O(1) but otherwise arbitrary
Minimizing the negative root in Eq.~18! with respect ton
leads to

wmin52ug f u, ~19!

whenn5(l22g f ). Then Eq.~16d! definesr
N
, the value of

r at which theNth unstable mode achieves its maximu
growth rate:
04560
ng

f

2br
N

25a~2pN/L !212g f 2l. ~20!

We also find how farr can deviate fromr
N

beforeV2 be-
comes negative

dr
N
;ugu f /~2ubur

N
!5O~1/N! for N@1. ~21!

Analytic expressions forf corresponding to the solution
given in Eqs.~4!–~6! are not known. But, in the large-r
limit, the Riemann-Lebesgue lemma@21# can be used to de
termine approximate expressions. Asr→`, for the solution
given in Eq.~4!,

f ;
1

2K~k!
UagU$E@am„4K~k!…#14~k221!K~k!%, ~22!

for the solution given in Eq.~5!,

f ;
1

K~k!
UagU$E@am„2K~k!…#%, ~23!

and for the solution given in Eq.~6!,

f ;
1

2K~k!
UagU$4K~k!2E@am„4K~k!…#%. ~24!

In each of these expressions, am(•) gives the Jacobi ampli-
tude andK(•) andE(•) are the complete elliptic integrals o
the first and second kind, respectively@9#.

Plots of2wmin /uau, a growth rate, versusk are given in
Fig. 2. This argument establishes that all finite-period o
dimensional linear phase solutions are unstable with res
to arbitrarily short wavelength transverse perturbations
ab,0, and that the growth rate of the instability remai
bounded asr→`.

Note that ask→1, f(z) in Eq. ~6! approaches a hyper
bolic tangent and the growth rate approaches that of
Stokes’ wave with an amplitude ofA22a/g. This estab-
lishes that there are an infinite number of unstable branc
if ab,0 andag,0.

Also note that ask→1, f(z) in both Eqs.~4! and ~5!
approaches a hyperbolic secant, and the correspon
growth rate limits to zero. This establishes that there is
large-r instability in the solitary wave limit ifag.0.

FIG. 2. Plots of2wmin /uau vs k. The solid line corresponds to
Eq. ~4!, the dotted line corresponds to Eq.~5!, and the dashed line
corresponds to Eq.~6!.
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V. MONODROMY

The system of equations in Eq.~11! is Hamiltonian inz,
with periodic boundary conditions. The coordinates on
phase space arep15dU/dz, p252dV/dz, q15U, andq2
5V. The Hamiltonian is

H5
1

2
~p1

22p2
2!2

1

2a
@l1br223gf2~x!#q1

2

1
1

2a
~l1br22gf2!q2

21
V

a
q1q2 . ~25!

Such a Hamiltonian system necessarily has a monodr
structure with invariants@22#. We used this structure to iden
tify the periodic solutions of Eq.~11! by numerically inte-
grating Eq. ~11! over one period off. This numerical
method is very similar to the numerical method used in Re
@18,19#.

FIG. 3. Plots of 2V vs r corresponding to Eq.~6! with
k5A0.8 and2a5b5g51. See text for a description.
. A
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The growth rates obtained from numerical simulatio
corresponding to Eq.~6! with k5A0.8 and2a5b5g51
are included in Fig. 3 as dots. The line is obtained from
small-r results. The dashed curve is obtained from the lar
r results with N55. Each dotted curve corresponds to
different unstable mode. A plot of the spatial structure of t
mode corresponding tor53.5, V520.99, andN55 is
given in Fig. 4.

Figure 3 demonstrates strong agreement between the
merical results and the small-r analysis whenr is near zero.
It also demonstrates agreement between the numerical re
and the large-r analysis.

Figure 4 demonstrates that theU andV obtained numeri-
cally are similar in form to theU andV obtained in the large-
r analysis.
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FIG. 4. Plots of U and V vs z corresponding tor53.5,
V520.99,N55.
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