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The two-dimensional cubic nonlinear Schinger equatiofNLS) can be used as a model of phenomena in
physical systems ranging from waves on deep water to pulses in optical fibers. In this paper, we establish that
every one-dimensional traveling wave solution of NLS with linear phase is unstable with respect to some
infinitesimal perturbation with two-dimensional structure. If the coefficients of the linear dispersion terms have
the same sigrelliptic case, then the only unstable perturbations have transverse wavelength longer than a
well-defined cutoff. If the coefficients of the linear dispersion terms have opposite(bigmerbolic casg then
there is no such cutoff and as the wavelength decreases, the maximum growth rate approaches a well-defined

limit.
DOI: 10.1103/PhysReVvE.68.045601 PACS nuni)er05.45.Yv, 42.65.5f, 92.10.Hm, 47.35.
I. INTRODUCTION If «y<0, then NLS admits the following solution:
~ The two-dimensional cubic nonlinear Sctinger equa- #(2)= \/—\25 k sn(z,k) with A = — a(1+ K2+ «2).
tion (NLS) is given by Y ®
e+ aht Bibyyt+ 91 ?9=0, (1)

Here ke[0,1] is a free parameter known as the elliptic
where = s(x,y,t) is a complex-valued function, and, S, modulus and cn(k), dn(-,k), and sn¢,k) are Jacobi ellip-
andy are real constants. All quantities are presented in unittic functions. Byrd and Friedmali®] provide a complete re-
less form. Among many other situations, NLS arises as aiiew of elliptic functions. Ifk<1, then each functiog(z) is
approximate model for the evolution of a nearly monochro-periodic. Ask—1, the period of each increases without
matic wave of small amplitude in pulse propagation alongbound, andé(z) limits to an appropriate hyperbolic func-
optical fibers[1] where 8>0, in gravity waves on deep tion, which we call a “solitary wave.”

water [2,3] where «3<0 and in Langmuir waves in a  These solutions, plus the “Stokes’ wavilane wave
plasma[4] where a8>0. As a description of a superfluid _ pdex-i(ar?—ylAD 7

[5], NLS is known as the Gross-Pitaevskii equati@7] Px.)=Ae ' (7

with a8>0. Sulem and Sulerfg] examine NLS in detail. . __contain the entire class of bounded traveling wave solutions
NLS ad_rmts a large class of one-dimensional travellngof NLS with linear phasd10]. Davey and Stewartsofg]
wave solutions of the form establish that a Stokes’ wave is unstable unless either
— _ ixt+iasx+ibsy+in aBy=0 or >0 anday<O0. In the remainder of this pa-
Xy, = (ax+by-stje ' @ per, we concentrate on Eq&)—(6), and on their instabili-
ties.
Zakharov and RubenchiKlL1] establish that Eq94) and
(5) with k=1 are unstable with respect to long-wave trans-
verse perturbations. Pelinovsk$2] reviews the stability of
o solitary wave solutions of NLS withk3<0 anday>0, and
WXy, 1) = p(z)e" > (3) presents an analytical expression for the growth rate of the
instability near a cutoff. Extensive reviews of the stability of
where¢ is a real-valued functiorz=x—2a«t, andk and\  solitary wave solutions are given in Refd3-15. Martin,

where¢ is a real-valued functiors=s/(2aa?+ 28b?), and

a, b, s, \, and n are real parameters. By making use of the
symmetries of NLS[8], all solutions of this form can be
considered by studying the simplified form

are real parameters. Yuen and Saffmafl6] examine numerically the stability of
If @y>0, then NLS admits the following two solutions of the spatially periodic solution given in E¢p) for a range of
form (3): parameters. Infeld and Ziemkiewid47] establish that all

nonlinear(or “nontrivial” ) phase solutions are unstable with
H(2)= [2% k cn(z,k) with A= a(2k2—1—«2), (4)  respect to long-wavelength perturbations. Aleshkethl.
Y [18] and Kartashowet al.[19] numerically examine the sta-
bility of Egs. (4)—(6) in NLS and establish some of the re-
N P : _ 2_ .2 sults obtained here.
¢(2) 27 dn(zk) with A =a(2=k"=«%). () We present four main results in this paper. First, every
one-dimensional traveling wave with linear phase is unstable
with respect to some infinitesimal perturbation with two-
*Electronic address: carterjl@seattleu.edu dimensional structure. Foall choices of the parameters,
"Electronic address: segur@colorado.edu there are unstable perturbations with long transverse wave-
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length. This result was originally presented in Ré&f7]. Our (@)
work generalizes the method and results of R&f]. 5 ' o
Second, ifaB>0, then the only unstable perturbations L L
have transverse wavelength longer than a well-defined cut- S5 =
oftl BT
Third, if «B<0, then there is no such cutoff. There are S0r e
unstable perturbations with arbitrarily short wavelengths in -15 ‘
both the transverse and longitudinal directions. 0 0.2 0.4 ®) 0.6 08 1
Fourth, foraB<0, the unstable perturbations with short A - , ; ‘
wavelength have transverse wave numbers that are confined | e
to narrower and narrower intervals as the transverse wave 2t T
number grows without bound. In these unstable intervals, as 32
the transverse wave number grows without bound, the maxi- O T e
mum growth rate approaches a well-defined limit.lds1, |  TTTTTIe—
this limiting growth rate tends to zero y>0, and to a 2 0.2 0.4 0.6 0.8 1
finite nonzero limit if «y<0. k
FIG. 1. Plots ofw,, and w5 vs k in (a) and (b), respectively.
II. STABILITY ANALYSIS The solid line corresponds to E@f), the dotted line corresponds to

. . . Eq. (5), and the dashed line corresponds to &j.
We consider perturbed solutiong,= ¢,(x,y,t), with the

fO||0Wing structure: IIl. SMALL- p LIMIT

Po=[b(2)+eu(x,y,b)+iev(x,y,t)+O(e?)]e >, Generalizing the work in Ref.11], we assume that for
(8)  fixedk and for fixed smalp, Eq.(11) admits solutions of the
form

whereu(x,y,t) andv(X,y,t) are real-valued functionsg,is a

small real parameteg=x—2a«t, and ¢(z)€ **\t is one U~Ug(2)+ puy(z)+ p2us(z)+ - - -, (129

of the solutions presented in the preceding section. Substitut-

ing Eqg. (8) into Eq. (1), linearizing and separating into real V~vo(2)+pv1(2)+p2va(2)+ - -, (12b

and imaginary parts gives

O2~p?wy+piw,t - - -, 12¢

—(CEK2+)\)U+3’)/¢2U+BUyy+auxx=vt, (99 pro1Tpw2 (129
) 5 wherew; are complex constants amgl andv; are complex-

—(ax™tNv+ydovtBoyytave=—u. O yayed periodic functions with the same perioddas

. . This assumption leads to the “neck” mode
Without loss of generality, assume that(x,y,t) and

v(x,y,t) have the forms U,(z,p)=0(p), (139
ux,y,t)=U(z,p)e” +c.c., (109 V.(z.p)=b+0(p), (13b)
v(x,y,t)=V(z,p)e” +cc., (10D 0=~ aBp?wi,+0(p?) (139

wherep is a real constant) is a complex constant) andV
are complex-valued functions, and c.c. denotes complex co
jugate. This leads to

r?—nd the “snake” mode

d¢
Ud(z,p)=—=+0O(p), 14
(ak?+M)U—-3y¢?U+Bp?U—ad?U=QV, (113 S(2p)= g7 +OP) (143
(ak?>+NV—ydp>NV+ Bp?V—ad?V=—QU. (11b Vs(z,p)=0(p), (14b)
These are the central equations in this paper. We assume that Q§= —aBp?wist+0O(pd), (140
U andV are periodic with the same period &s More gen-
eral boundary conditions are discussed in [R2). Instabil-  wherew;,, and w,¢ are functions of the elliptic modulus of

ity occurs if Eq. (11) admits a periodic solution with the unperturbed solution. Complicated but exact expressions
Re())<0. Without loss of generality, for the remainder of for w;, andw; are derived in Ref.20]. The final results are
this paper we assume=0 by redefining\. presented in Fig. 1, where we plat,, and w5 (Which de-

In Secs. Il and IV, we examine Ed@11l) using smallp termine the growth rat@¢wversusk for Egs.(4)—(6).
and largep asymptotic analyses, respectively. In Sec. V, we These plots establish that,,<0 for Egs.(4) and(5) and
present results from a numerical study in which Bd) was  w,,<0 for Eq.(6). Therefore, ifa 3>0, Egs.(4) and(5) are
solved for a wide range g values. unstable with respect to long-wave transverse perturbations
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corresponding to the neck mode and Eg).is unstable with 2 ST
respect to long-wave transverse perturbations corresponding | e
to the snake mode. 1.5¢ ;

These plots also establish thai,>0 for Eqgs.(4) and(5) 3 ,"
andw4,>0 for Eq.(6). Therefore, ifa 3<0, Egs.(4) and(5) \-E 1 .
are unstable with respect to the snake mode and ®gss 5
unstable with respect to the neck mode. 0.5}

It follows from these results that a linear phase solution of o2
NLS is unstable to a growing neck modedfy>0, and to a 0 - : :

0 0.2 0.4 0.6 0.8 1

growing snake mode iBy<O0.

IV. LARGE- p LIMIT
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k

FIG. 2. Plots of—wp,,/|@| vs k. The solid line corresponds to
Eq. (4), the dotted line corresponds to E§), and the dashed line

If «B>0 andp is chosen to be large enough to satisfy corresponds to Ed6).

had
B

then the two operators on the left hand side of @4) have
the same sign, s?><0. Therefore, there is no largein-
stability if «3>0.

p?>5|—|, (15)

If «B<<0 andp is large, then one can show that there is

no instability unles€)=0(1). Therefore, we assume

U~Li(p2)+p 2 L(p2)+ -, (162
V~&(p2)+p 2E(pn2)+ -, (16b)
Q~wi+p 2wyt - -+, (160
ap?=—Bp*+v+0(p~?), (16d)

wherev is a real constanty; are complex constants, aigel

and§; are complex-valued periodic functions with the same

period ase.
Substituting Eq.(16) into Eq. (11), one finds at leading
order

(17a

(17b

U~ {y58in(uz+29)+0(p~?),
V~ épssin(uz+20) +0(p~?),

where {4, €11, andzy are constants. Requirirld andV to
have the same period a&(z) forcesu to take on discrete
values:u=2m7N/L, wherelL is the period of¢$(z), andN is
an integer. To satisfy Eq16d), N> 1. At the next order imp,
solutions are periodic only if

wi=*\yf =N+ v N —3yf—, (18)
where f is the Fourier coefficient[in sin(uz+z)] of
$?(2)sin(uz+zy) and v is O(1) but otherwise arbitrary.
Minimizing the negative root in Eq(18) with respect tov
leads to

Wmin:_|7f|v (19

whenv=(\—2yf). Then Eq.(16d) definesp , the value of

—,8p§=a(27TN/L)2+2yf—)\. (20)

We also find how fap can deviate fronpN before)? be-
comes negative

5pN~|y|f/(2|ﬁ|pN)=O(1/N) for N>1. (21
Analytic expressions fof corresponding to the solutions
given in Egs.(4)—(6) are not known. But, in the large-
limit, the Riemann-Lebesgue lemmal] can be used to de-
termine approximate expressions. As», for the solution

given in Eq.(4),

f %‘{E[am(4K(k))]+4(k2—1)K(k)}, 22)

1
T 2K(K)

for the solution given in Eq(5),

a
feo — | =

K(k) |y

and for the solution given in Ed6),

{E[am(2K (K))]}, (23

1 |a
f~m‘;‘MK(k)—E[amMK(k))]}. (24)

In each of these expressions, angives the Jacobi ampli-
tude andK (-) andE(-) are the complete elliptic integrals of
the first and second kind, respectiv¢B).

Plots of —w,i,/| |, a growth rate, versus are given in
Fig. 2. This argument establishes that all finite-period one-
dimensional linear phase solutions are unstable with respect
to arbitrarily short wavelength transverse perturbations if
aB<0, and that the growth rate of the instability remains
bounded ap— .

Note that ak—1, ¢(z) in Eq. (6) approaches a hyper-
bolic tangent and the growth rate approaches that of the
Stokes’ wave with an amplitude of —2a/y. This estab-
lishes that there are an infinite number of unstable branches
if B<0 anday<0.

Also note that ak—1, ¢(z) in both Egs.(4) and (5)
approaches a hyperbolic secant, and the corresponding

p at which theNth unstable mode achieves its maximum growth rate limits to zero. This establishes that there is no

growth rate:

largep instability in the solitary wave limit ifey>0.
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FIG. 3. Plots of —Q vs p corresponding to Eq(6) with
k= /0.8 and— o= B=y=1. See text for a description.

V. MONODROMY

The system of equations in E¢L1) is Hamiltonian inz,

with periodic boundary conditions. The coordinates on th

phase space ag,=dU/dz, p,=—dV/dz, q,=U, andq,
=V. The Hamiltonian is

1 1
H=3(pi—p3)— 5[\ +Bp*=3y¢*(x)]ai

+i(>\+ﬁ 2 ¢2)q2+2q q (25)
2 Y Y 27 7, itz
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UandV

FIG. 4. Plots ofU and V vs z corresponding top=3.5,
0=-0.99,N=5.

The growth rates obtained from numerical simulations
corresponding to Eq6) with k=0.8 and—a=8=y=1
are included in Fig. 3 as dots. The line is obtained from the
smallp results. The dashed curve is obtained from the large-
p results withN=5. Each dotted curve corresponds to a
different unstable mode. A plot of the spatial structure of the
mode corresponding t@=3.5, =-0.99, andN=5 s
Qiven in Fig. 4.

Figure 3 demonstrates strong agreement between the nu-
merical results and the smallanalysis whermp is near zero.
It also demonstrates agreement between the numerical results
and the larggr analysis.

Figure 4 demonstrates that thkandV obtained numeri-
cally are similar in form to th&J andV obtained in the large-
p analysis.
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